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Abstract 

How do brains learn which features matter how much, when and for what purposes?  A specific 

feature may matter more or less for recognitions of different learned patterns, and in different contexts 

and attentional foci.  Simple executable "neural circuits" built from biologically-inspired reusable 

memory pattern components in the NeurOS and NeuroBlocks technology
1
 model and implement a 

range of learning and dynamic contextual/situational/attentional feature relevance.  A pattern is a 

collection of weighted features, roughly analogous to a neuron or neuron assembly.  New patterns are 

created for sufficiently novel feature combinations.  Individual feature weights in best-matching 

existing patterns grow or diminish with repetition, yielding patterns that adjust to repeated experience.  

Arbitrarily complex classification meshes typical of human knowledge are easily assembled by 

varying a simple novelty parameter.  Cascading pattern recognitions build up layers of concrete to 

abstract feature vocabularies.  Names or labels are modeled as synonyms for experience patterns.  

Context can be modeled as yet another feature, derived from recent activity, to discriminate among 

otherwise similar patterns.  Attention can be modeled as broad dynamic parameters modulating feature 

signal strengths.  
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1 Introduction 

An abiding challenge in understanding how biological brains work, and in creating similarly 

intelligent machines, is in understanding representations and algorithms of the information processing 

involved (Marr, 1982 pp. 19-27).  How do biological brains achieve complex cognitive capabilities by 

interconnecting a relatively small variety of building blocks:  neurons of several types, synapses and 

dendrites.  How does useful learning start from a small number of data points and continually adjust 

with experience?  How do different personal life experience histories yield similar-enough knowledge 

frameworks? 

                                                           
1 patents pending; see www.cognitivity.technology 
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This work follows Braitenberg's evolution-like "downhill invention" approach (Braitenberg, 1984 

pp. 20-21):  synthesize and incrementally improve working (artificial) systems that exhibit familiar 

cognitive capabilities.  From these systems we may learn about core information representations and 

algorithms and system architectures underlying cognition.  Insofar as these systems are built by 

interconnecting reusable biologically-inspired computational components in biologically plausible 

structures, we may draw some insights as to how corresponding capabilities may operate in biological 

brains, with rapid design iteration speeding hypothesis testing.  And we may make strides along the 

path of creating artificial systems with similar capabilities.  Put differently, let's start with simple 

assemblies of simple biologically-inspired components and see how far we can get. 

What's a feature?  For purposes of this paper, a feature is any distinct time-varying neural signal 

representing any percept or concept at any concrete through abstract level.  This work explores how 

patterns of recurring feature combinations are learned, adjusted, classified, labeled, recognized and 

combined, and how recognition of such patterns vary with current context and attentional focus.  

Simple "neural circuits", using the NeurOS™ and NeuroBlocks™ technology, direct signals analogous 

to neuron spiking rates among reusable components performing biologically analogous computations 

and information storage.  Small synthetic data sequence examples demonstrate the operation and 

learning dynamics of the assembled systems; these data are not "crafted" in any way other than to 

suggest one of many possible plausible sequences an organism might experience. 

How can brains and intelligent systems learn so easily, quickly and effectively, especially from a 

few or even single examples, often with minimal or no supervision or reinforcement.  How do such 

systems continually adjust to new experiences and environmental shifts?  The bulk of current machine 

learning technologies require very large data sets, manual labeling, extensive parameterization of 

designs, take a long time to train and validate, and once trained are relatively static.  Humans, by 

contrast, learn quickly from new examples and continually adjust what they know to new experience 

and corrections. 

First, a single NeuroBlock "Set pattern" module managing an open collection of neuron-like 

feature patterns performs unsupervised learning of arbitrary classes.  Learning creates new patterns or 

adjusts previous patterns.  Varying matching and novelty parameters enables modeling of finely tuned 

exemplar patterns through increasingly broad stereotype patterns.  Such a pattern is analogous to a 

"proxytype" (Prinz, 2002), where a learned pattern itself may be used as a feature input to other 

patterns.  Feature inputs to a pattern can span multiple modalities and abstraction levels, depending on 

module connections. 

Feeding the same input feature space in parallel to multiple such memory pattern modules with 

different matching and novelty parameter settings yields a rich classification mesh of learned 

exemplars and stereotypes that produces differential matching strengths to on-going experience.   

Previously learned patterns are recognizable from a subset of their features, and their remembered 

features can merge with current input features to predict or "fill in the blanks" of missing features.  

Cascading pattern recognitions as features of other patterns yields layers of feature alphabets and 

vocabularies. 

Names, labels and associated similar patterns are modeled as synonyms, a variation on a Set 

pattern with any/OR matching semantics:  activity on any member feature activates the whole 

synonym pattern.   Reification of such synonym patterns activates all synonyms, giving rapid access to 

similar patterns and labels. 

Other cognitive processes (e.g., language recognition, other associational processes) may yield 

activation of a label, and, through reification of synonym patterns for the label, activate features 

associated with synonym patterns for the label, yielding a mechanism for imagination. 

Interpretation of current inputs may depend on context.  A word may have multiple meanings.  The 

current context of a conversation, computed perhaps from recent words in a conversation, may 

disambiguate the word's meaning, elevating the activation of one candidate meaning over others. 



 

 

Finally, attention is modeled as different dynamically adjustable multiplicative gains on feature 

signals.  Such gains are computed from global parameters, which values in turn may be computed 

from other neural activity, modeling broad regional neuro-chemical influences. 

A major point to all of these example learning and recognition neural circuits is that they are built 

largely using multiple instances of one common mechanism:  a single Set pattern memory module.  

Simple parameter adjustments and interconnections exhibit the range of cognitive phenomena 

modeled. 

Broadly, this paper can be viewed from two complementary viewpoints.  The breadth of cognitive 

functions built bolster confidence in the strength and generality of the NeurOS cognitive systems 

architecture, the built-in NeuroBlock long-term memory pattern modules, and the rapid assembly and 

testing of cognitive architecture hypotheses enabled.  The specific neural circuits demonstrated are 

plausible constructs to address important representation and algorithm challenges in cognitive research 

and engineering.  

2 Materials and Methods 

The cognitive functions modeled here are built and run using the NeurOS technology, one mission 

of which is to accelerate cognitive systems research and development.  NeurOS enables rapid iterative 

assembly, running and instrumenting of cognitive functions by interconnecting reusable biologically-

inspired component modules.  See (Scheffler, 2015) and (Scheffler, 2016) for detailed descriptions of 

the technology and many usages.  An overview sufficient to understand this work is provided here. 

 
Figure 1:  Simple neural circuit 

Figure 1 shows a simple NeurOS neural circuit typical of this technology, built graphically using 

the NeurOS Designer tool.  Iconic boxes are component modules called NeuroBlocks, each with 

function-specific input and output ports.  Arrows are links, each conveying multiple feature signals 

from an output port of one module to an input port of a module, forming a directed graph, with loops 

allowed (not shown).  (Details of this specific neural circuit are discussed below in Simple 

Unsupervised Learning and Recognition).  Such neural circuits are directly executable by the portable 

NeurOS runtime system. 

A module performs functions typical of a group or layer of multiple similar neurons or neuron 

assemblies, obtaining external inputs or feature signals on its input port(s), performing computation, 

updating internal state, and delivering external outputs or feature signals on its output port(s).  A 

feature is encoded as a time-varying signal with a scalar value typically in the range (0,1) representing 

a fraction of a neuron's maximum output spiking rate
2
.  A link conveys multiple such feature signals 

from one module to another, analogous to a "nerve" (axon bundle).  Individual modules have function-

                                                           
2 This feature encoding, a single scalar value of a spiking rate over time, is the primary mechanism available to communicate 

among neurons.  Any characteristic we might loosely call a feature (e.g., color=blue, size=large, duration=125msec) must be 
quantized in one or more such scalar feature signals (e.g., distinct R, G and B intensities, strengths of different{small, medium, 

large} signals, strengths of time interval quanta {10, 25, 50, 100, 200}. 



 

 

specific parameters, analogous perhaps to different neuron/dendrite types and geometries.  Some 

module parameters can vary dynamically during circuit operation by referring to variable global 

parameters, typically modeling broad neuro-chemical signaling effects. 

NeurOS includes many built-in module types, as well as facilities to easily incorporate external 

programs or write custom modules.  Individual module functions are described as used in this paper. 

Several long-term memory pattern modules learn and recognize spatio-temporal combinations 

of input signals, similar to proxytypes (Prinz, 2002).  A Set module, used heavily here, learns and 

recognizes sets of concurrently active (non-0) feature signals.  One Set pattern is analogous to a 

neuron that learns a pattern via adjustments to conductivities of its input synapses.  A similar 

Sequence module learns and recognizes sequential combinations of feature signal changes without 

regard to time, and a Temporal module learns and recognizes combinations of feature signal changes 

including relative time intervals.  A complementary Reify module regenerates signals for all the 

component features of a pattern, and is often used for prediction and imagination.  These components 

model an implicit sparse coding of a feature space. 

A memory pattern exists in one pattern space.  Feature pattern novelty is judged within one space. 

Unlike conventional neural networks, the input feature space of patterns in one pattern space is 

unbounded, as is the number of distinct patterns.  New features created (e.g., by learning new patterns) 

can flow over existing links with no circuit change, and can participate in subsequent pattern learning 

and recognition.  Multiple pattern spaces model distinct physical or functional brain regions.   

Simple Set patterns used here follow a classical neuron mathematical model:  a non-0 numeric 

weight associated with each input feature signal that affects the pattern.  Set pattern matching strength 

is computed as a familiar sum of products of feature signal strengths and corresponding weights, 

scaled by a parameterized normalizing curve that determines the semantics of auto-associative 

matching, over a range spanning {any/OR, a few, some, many, most, all/AND}
3
.   

Learning is local to one pattern space and follows simple rules, similar to classical nearest-

neighbor cluster learning: 

1. If a current feature combination matches an existing pattern well enough (matching strength 

exceeds a threshold parameter), the feature weights of the best matching pattern(s) are 

adjusted toward current signal strengths according to the pattern module's learning rate 

parameter and matching history, possibly adding or removing features from the pattern as 

needed.   

2. If no existing pattern matches a current feature combination well enough, a new pattern is 

created with feature weights based on current signal strengths, analogous to recruiting a new 

neuron to recognize the novel pattern.  (This is akin to dynamically adding a new neuron-like 

unit as needed to a conventional artificial neural network layer.) 

A single Set pattern is thus akin to a cluster in feature space.  One Set module and its associated 

pattern space effectively defines a classical single layer neural network, with the addition that the 

population of inputs and the number of units is unbounded.  No backtracking or static training is 

involved.  Learning is continuous, adjusting pattern populations and feature weights with continued 

experience.  Cross-inhibition among patterns is not directly represented, but emerges from post-

processing of activation strengths among multiple recognition candidates. 

Sequence and temporal pattern matching and learning operate similarly; see (Scheffler, 2014) for 

details. 

 

The current work explores how far we can get using just these built-in memory module and 

functional module types. Additional memory models and functionality can be easily added with 

                                                           
3 Additional pattern capabilities, not discussed here, include expected-value distributions for each feature (Kurzweil, 2012 

p. 48), error/noise tolerance and salience/permanence for forgetting. 



 

 

NeurOS customization features.  Complex capabilities are created by interconnecting multiples of 

these modules, reminiscent of convolutional and recurrent neural networks. 

Because learning in this architecture works with relatively few examples, and because human 

learning progresses continuously from very few initial experiences, very small synthetic training data 

sequences were used.   

For presentation clarity, feature signals discussed here are often assigned symbolic and 

contextually relevant semantic  IDs, for example "barks" or "word_3" instead of #1d2e3f; in a 

practical system such signals would have no more identification than individual neurons/axons in a 

biological brain. 

3 Results 

A progression of NeurOS neural circuits were built that exhibit a variety of feature pattern learning 

and recognition.  These circuits show how feature strengths in patterns change with experience, and 

how pattern recognitions change dynamically with context and attention. 

3.1 Simple Unsupervised Learning and Recognition 

The neural circuit in Figure 1 operates as follows: 

 The "data set in" module reads from a file, each line representing a data point of concurrent 

feature identifiers.  For each feature identifier, it emits a signal with a value of 1 (maximum 

spiking rate) for 40 msec.  Labels associated with data points are ignored in this usage, 

indicated by the "lbls" output port remaining unconnected. 

 The "patterns" module is a Set pattern recognition and learning module.  It tries to match each 

new concurrently active feature set with existing patterns in its pattern space, and either 

adjusts feature weights of the best matching pattern(s) or creates a new pattern for sufficiently 

novel feature combinations.  It sends a feature signal for each matched pattern on its "out" 

port, with a value reflecting pattern matching confidence.  It emits a feature signal with a value 

of 1 on its "new" output port each time a new pattern is created. 

 Additional modules provide human-readable output.  The "filter >0" module feeding the 

"pattern ids" module yields a "cloud" of pattern identifiers as they are matched, with font size 

proportional to matching strength.  The "plot" module shows signal strengths of input features 

and recognized/new patterns in an EKG-like display over time. 

 The "manual input" keyboard module allows hand-entry of data points as lists of feature 

identifiers, for exploration and testing. 

Figure 2 shows possible parameter settings of the "patterns" Set pattern module.  Patterns live in a 

memory pattern space named "exemplars" in this case.  Learning is enabled.  The learning rate 

controls how much newly arriving features affect the weights of the best matching pattern:  higher 

values favor new data over past history.  A new pattern is created only for a minimum of 4 

concurrently active input features.  (Fewer features may still participate in pattern matching, just not 

new pattern creation.)  The response curve indicates that a minimal match score requires at least 25% 

of the feature-weight products, and grows linearly to a match score of 1 when 100% of the feature-

weight products are present, yielding a "many-most" pattern matching semantic.  The new pattern 

(novelty) threshold is roughly the "cluster narrowness" of each pattern in "feature space".  High values 

(as in this case) yield many highly specific narrow exemplar patterns, while lower values yield fewer 

broader stereotype patterns.  



 

 

 
Figure 2:  Set pattern module parameters 

Using the simple data set below, we re-run the neural circuit of Figure 1, varying the response 

curve and novelty parameters.  The data set is in a simple "label = features" file format.  Labels are 

ignored in this first usage, indicated by the "lbls" port on the "data set in" module remaining 

unconnected.  For simplicity in this example, all features have a(n implicit) value/strength of 1. 

dog = fur, snout, barks, big, 4 feet, brown, tail 

dog = hair, snout, whines, medium, 4 feet, black, tail, friendly, slobbers 

dog = fur, yips, small, 4 feet, white, nasty 

cat = fur, tail, small, black, 4 feet, pointy ears, meows, whiskers 

cat = fur, tail, small, grey, 4 feet, pointy ears, meows, whiskers 

cat = tail, calico, purrs, 4 feet, whiskers, claws 

Table 1 shows pattern feature weights from running the same neural circuit from scratch (no 

memory between runs) with several different parameter settings.  Blank table cells represent either a) 

feature is not part of the pattern (equivalent of 0 feature weight), or b) after learning the feature weight 

diminished below a significance threshold of 0.1 and was eliminated from the pattern. 

 The columns labeled #1 through #6 show individual exemplar patterns learned for this data 

set, courtesy of a "many-most" response curve semantic and a high novelty threshold:  each 

new pattern was sufficiently different from any previous one to cause creating a new narrow 

exemplar pattern.   

 The columns subgroup_1 and subgroup_2 show feature weights of two distinct stereotype 

patterns resulting from a moderate novelty threshold and a "some" response curve semantic.  

Careful examination of the input data and the weights table reveals that, while the first two 

"dog" data points combined into the "subgroup_1" pattern, the third "dog" data point was 

sufficiently different that the new "subgroup_2" pattern was created; subsequently the several 

"cat" data points matched this cluster better than subgroup_1.  This is to be expected:  this is 

unsupervised learning, so only feature similarity matters and labels categorizing the data 

points are not part of the learning. 



 

 

 Finally the "group_1" column results from a low novelty threshold and a "some" matching 

response curve semantic.  This single stereotype records repeatedly updated commingled 

feature weights for all the data points.  It shows clear evidence of preference for the features of 

later data points over earlier ones, courtesy of the high learning rate.  Clearly color and 

personality matter much less than having 4 feet, fur and a tail for membership in this group. 

novelty: 0.9 0.59 0.5 
curve min-max: 0.25 - 1 0 - 0.5 0 - 0.3 

pattern id: #1 #2 #3 #4 #5 #6 subgroup_1 subgroup_2 group_1 

4 feet 1 1 1 1 1 1 1 1 1 
barks 1 

    
 0.69   0.14 

big 1 
    

 0.69   0.14 
black   1 

 
1 

 
 0.31 0.18 0.22 

brown 1 
    

 0.69   0.14 
calico   

    
1   0.23 0.33 

claws   
    

1   0.23 0.33 

friendly   1 
   

 0.31     
fur 1 

 
1 1 1 1 0.69 0.77 0.59 

grey   
   

1    0.26 0.22 
hair   1 

   
 0.31     

medium   1 
   

 0.31     
meows   

  
1 1    0.43 0.37 

nasty   
 

1 
  

   0.33   
pointy ears   

  
1 1    0.43 0.37 

purrs   
    

1   0.23 0.33 
slobbers   1 

   
 0.31     

small   
 

1 1 1    0.77 0.45 
snout 1 1 

   
 1   0.22 

tail 1 1 
 

1 1 1 1 0.67 0.92 
whines   1 

   
 0.31     

whiskers   
  

1 1 1   0.67 0.7 
white   

 
1 

  
   0.33   

yips     1        0.33   

Table 1:  Unsupervised pattern learning 

The weights in Table 1 result from just a single pass over the data set in the order shown, and 

therefore exhibit order-based biases.  Rerunning the same data set multiple times causes these weights 

to settle down to relatively stable values (not shown here).  Running the same data points in 

different/random orders can yield modestly different stereotype subgroups.  This phenomenon was not 

studied further for this paper; see Future Work. 

After this (brief) training, subsequent manual input of partial feature combinations yields multiple 

matching scores for each of the learned patterns, as shown in Table 2. 
curve min-max: 0.25 - 1 0 - 0.5 0 - 0.3 

pattern id: #1 #2 #3 #4 #5 #6 subgroup_1 subgroup_2 group_1 

fur, barks, tail 0.24 
     

0.62 0.42 0.85 
small, meows, whiskers 

   
0.17 0.17 

  
0.54 0.78 

small, meows, whiskers, black 
   

0.33 0.17 
 

0.08 0.60 0.9 
big, brown, barks, tail 0.43 

     
0.8 0.19 0.69 

Table 2: Example pattern recognition scores 

3.2 Concurrent Classification and Recognition 

Human classification tends to be messy and only quasi-hierarchical.  A new input data item (set of 

active features) can concurrently be all of Fido, a golden retriever, a dog, an animal, a pet, a friend, a 

service animal, a road hazard.  Recognitions are often differential, with several possibilities activated 

with different strengths, especially in the face of partial information.  

This suggests a neural circuit like that in Figure 3 (a).   



 

 

 
Figure 3:  Concurrent multi-classification 

Three distinct Set pattern modules, "exemplars", "subgroups" and "groups" learn and recognize 

concurrent input feature combinations in parallel, each with different novelty and response curve 

parameters as in Table 1, and producing the same concurrent pattern recognition scores as in Table 2.  

Figure 3 (b) shows the progress of feature arrival and concurrent pattern recognition and creation over 

time.  All the exemplar and stereotype patterns are available for recognition and additional learning for 

subsequent inputs. 

Note that just two neuron-equivalent patterns (subgroup_1 and subgrooup_2) are needed to 

represent essential feature similarities/differences among data points, and an additional one (group_1) 

to capture commonalities and relative feature contributions for all patterns. 

3.3 Prediction 

Learned patterns make it possible to predict features not actually experienced and even correct 

perceptual mistakes and uncertainties. 

 
Figure 4:  Prediction 

In Figure 4, after the initial learning from data (the "data set in" module), manual input of a subset 

of features via the "manual features" keyboard input module leads to pattern recognition in the 



 

 

"patterns" module, yielding one or several pattern matching signal events with associated matching 

scores.  The "best match" module picks the pattern with the highest current matching score, and the 

"reify" module regenerates signals for all the previously learned features of that pattern, with signal 

strengths proportional to both the pattern recognition score and the weight of the feature within that 

pattern.  These feature signals are commingled at the input to the "merged features" id cloud module, 

yielding a composite of both experienced and predicted features, with font size indicating relative 

feature strengths.  Observing just "fur", "barks" and "snout" predicts "4 feet" and "tail" strongly, likely 

"big" and "brown", with other features possible but with low likelihood. 

3.4 Layers 

Simple pattern learning and matching serves as a repeated building block for higher levels of 

cognition.  If we cascade two or more successive pattern modules, with recognized patterns at one 

layer as input features to the next layer, as shown in Figure 5 (a), we achieve an adaptive hierarchy of 

what we might call "alphabets" or "vocabularies".  Visual edges/curves/corners become letters, letters 

become words, words become phrases.  Edges/lines/corners become shapes become objects become 

scenes.  With continued experience, familiar combinations at one level emerge as the most likely 

interpretations of continued input features.  As one vocabulary level settles/converges on the most 

common patterns at its level, these patterns as features lead to progressive settling/convergence at 

successively higher conceptual levels.  Intuitively, this is reminiscent of childhood learning.  Complex 

experience patterns at one "level" remain disorganized until some mastery ( pattern recognition 

stability) of basics at lower levels is achieved.  Thereafter these features become stable contributors to 

next layer(s) of patterns. 

In neural circuit (a) the "LED segments" file reading module simulates successive observations of 

a typical 14-segment digital LED display (b), each file line yielding concurrent signal bursts for the on 

(lit) segments of the display for one letter observation.  The "letter patterns" Set module recognizes 

and emits signal bursts for one (or possibly more) candidate letters; the "max letter" module passes 

along just the strongest candidate.  "words" is a Sequence pattern module that recognizes sequences of 

input signals, in this case individual words; "phrases" is a similar Sequence module.  Both modules 

share previously learned patterns in the same memory space, with one relevant sequence pattern 

shown in (c).  The EKG-like signal plot (d) shows the action over time. Signal lines are sorted in first 

non-0 signal appearance order.  (The "add prefix" module simply prepends "segment_" to signal IDs 

for display clarity.)   

In particular, as enough letters accumulate in sequence to spell the word "four", slight recognition 

of the gettysburg_address" phrase begins.  Recognition of additional words increases phrase 

recognition progressively as highlighted in red. 

Those familiar with today's "deep learning" machine learning approaches, particularly 

convolutional neural nets (CNNs), will no doubt recognize similarities.  See Summary and Discussion 

for differences and continuous incremental learning. 



 

 

 
Figure 5:  Layers of patterns 

3.5 Labels as synonyms 

This section explores hypotheses of labels as synonyms for patterns.  In this view, there is nothing 

special about a label:  it is "just another feature" associated with a combination(s) of other features. 

A second cascaded Set pattern module creates patterns that associate labels with other feature 

patterns, using a "synonym" semantic where any activity on any input member to a pattern stimulates 

the pattern, similar to an OR function.  Reification of the synonym pattern yields all its components:  

labels and associated patterns. 

 A label may be associated with a feature pattern, like an exemplar name (e.g., "Fido") or a 

classical best category or class label (e.g., "dog", "animal", "living thing", "friend", etc.) 

 Multiple labels, such as names, sounds or symbols, can be associated with a feature pattern, often 

a stereotype pattern (e.g., "dog"). 

 A label (e.g., "dog") may be associated with multiple feature patterns, often exemplars (e.g., 

multiple specific dogs) or multiple stereotypes. 

 Multiple patterns may be synonyms of each other, as in the case of multiple "views" of the same 

or similar objects, including features across sensorimotor domains. 

The neural circuit of Figure 6 demonstrates learning these kinds of relationships.   



 

 

 
Figure 6:  Assigning labels to patterns 

The previous data set is used, this time with the "lbls" output connected.  The parameters of the 

"subgroups" module yield three distinct subgroups from the data set, as shown in Table 3 below.  The 

label "dog" is associated with subgroups 1 and 2, while the label "cat" is associated with subgroups 2 

and 3.  Feeding the label "dog" to the "subgroup labels" Set pattern module yields the 

"subgroup_labels_1" synonym pattern which, when reified, yields signals for both "subgroup_1" and 

"subgroup_2" patterns, modulated by their respective weights (0.6 and 0.33).  Reifying each of these 

yields the combination of features in both subgroup patterns. 
data points patterns/labels subgroup_labels_1 subgroup_labels_2 

dogs 1, 2 subgroup_1 0.6  

 dog 1.0  

dog 3, cats 4, 5 subgroup_2 0.33 0.59 

cat 6 subgroup_3  0.33 

 cat  1.0 

Table 3:  Label synonyms 

Variations of parameters can use this same neural circuit pattern to assign labels to individual 

exemplars (e.g., "Fido" to the first data point, etc.), or to the whole data set (e.g., "animal" to the 

overall group stereotype). 

3.6 Imagination 

A label can serve as a generator of a pattern of features.  Hear or read "dog", or have higher-level 

cognitive processing generate the label "dog", and the features we have come to associate with dogs 

"spring to mind".  Through the synonym patterns introduced above, activation of a label feature leads 

to activation of its synonym pattern(s).  Reification of those patterns activates the pattern member 

features, "bringing to mind" all the features of the synonym-associated pattern(s), with strengths 

proportional to their weights in the pattern.  So, for example, to imagine a "cat", enter the label "cat" in 

the "label input" module in Figure 7, activating features we have learned to associate with cats in our 

experience. 

Figure 7 adds a new bottom path to the neural circuit of Figure 6Error! Reference source not 

found..  Entering a label like "cat" in the "label input" keyboard input module causes the "find 

synonyms" Set module to find synonym patterns including "cat".  "reify_synonyms" regenerates all 

the synonyms for "cat" including possibly many patterns.  "reify_features" subsequently regenerates 

all the features of all the synonym patterns for "cat", with individual feature strengths of the activated 

patterns commingled additively and displayed by the "features" word-cloud module with font size 

proportional to relative feature strength. 



 

 

 
Figure 7:  Imagination 

Note that relative feature strengths indicated are as previously learned from the data (weighted by 

the most recent encounter), not necessarily what we would think of after our lifetime of adjustment of 

feature weights.  The "other processes" module and path is a place-holder to indicate that the label 

input to this neural circuit might also come from other cognitive processes, such as language parsing 

or higher-level imagination. 

3.7 Context  

Our interpretations of ambiguous words like "beat", "pitch", and "batter" depend strongly on the 

context of our recent conversation, for example:  music, sports or cooking.  Conversely, the context of 

a conversation derives (at least in part) from words recently perceived (or imagined). 

The neural circuit (a) in Figure 8 demonstrates mechanisms for simultaneously computing context 

and progressively adjusting context-dependent meanings of words. 

The "words in" keyboard input module is configured to emit successive white-space-separated 

words as individual signal bursts (value=1, 40 msec duration).  The following "keep keywords" 

Transformer module discards most non-contextual words (e.g., articles, prepositions and pronouns) 

purely to simplify results display.  Three successive word sequences (c) are shown, all using the word 

"beat", which takes on different meanings in each sentence.  Successive word features are persisted for 

a few seconds by the "working mem" module. These features are combined in the "context lookup" 

Set module to progressively establish possible current contexts (cooking_context, music_context, 

sports_context) based on previously learned terminology for each context (b), with signal values 

reflecting confidence.  The "meaning lookup" Set module recognizes patterns combining a current 

word and current contexts to generate possible meanings (previously learned), with corresponding 

signal strengths indicating confidence, as highlighted in the EKG-like combined "plot" module display 

(d).   

The word "beat" takes on different meanings depending on context:  green for the 

cooking_context, blue for the music_context, and purple for the sports_context.  Note that, 

although "beat" occurs early or mid-way in each sentence, its meaning strength(s) grows progressively 

as the current context is more firmly established with later words in each sentence. 



 

 

 
Figure 8:  Context 

3.8 Attention 

Attention and focus are complex and multi-faceted.  Conceptually, various biological mechanisms 

act to increase activation of features important at the moment (thereby enhancing downstream 

processing activity) and decrease activation of other features.  In the limited space available here, we 

explore just one of many possible NeurOS usages to loosely model the gating effects of neuro-

chemical concentrations on neural activity:  shared dynamic parameters and feature signal gain 

parameters. 

Figure 9 is a highly simplified model of how observation of potentially dangerous features may 

enhance attention to external perception. 

In neural circuit (a) the "sense inputs" keyboard input module simulates a variety of observed 

sensory signals (e)
4
, emitting them as full-strength (value=1) 40-msec-long signal bursts in sequence 

100 msec apart.  The "working mem" module persists and decays these signals exponentially with a 

half-life of 500 msec.   The "danger patterns" Set pattern module is initialized with a pattern (b) of 

certain features that mean danger.  (In a realistic system these patterns might be learned and have non-

uniform feature weights proportional to "how much danger".)  As features arrive, this module emits a 

signal for the "danger" pattern with strength proportional to the cumulative strengths of dangerous 

features currently observed.  The "update DANGER" Transformer module sets the value of the graph-

level shared parameter G.DANGER to the current strength of the "danger" pattern via expression (c).  

Along the bottom path, the "apply gain" Filter module uses expression (d) to modulate feature signal 

strengths.  When there is no current danger (G.DANGER is 0) then the perceptual input signal gain is 

0.5, perhaps corresponding to normal background environmental awareness.  As features arrive that 

elevate G.DANGER (e.g. "tiger"), the gain increases and incoming raw sensory signals propagate with 

increased values, loosely modeling biological neuro-chemical effects on synapses.  As time passes 

with no new activity from potentially dangerous incoming features, G.DANGER decays and the net 

modulated strengths of incoming perceptual feature signals return to their "normal" levels.   

                                                           
4 As in other examples, these signals are named symbolically for explanation clarity.  In a realistic system these are simply 

signals derived from perceptual processes with non-symbolic identifiers. 



 

 

All this is shown graphically in (f).  The initial tree, grass and tiger signals show a "normal" gain of 

0.5.  The first recognition of "tiger" stimulates "danger", which in turn enhances the strengths of all 

subsequently arriving perceptual signals.  Subsequent perceptions of "roaring" and "snake" further 

boost the gain of external perceptual signals.  As time passes with no new dangerous feature 

perceptions, "danger" decays and the gains on perceptual features (e.g., repeated perceptions of "grass" 

shown) settle to their normal values. 

 

 
Figure 9:  Attention 

This same machinery can of course have other effects on other neural signal paths.  For example, a 

different gain expression such as "1-G.DANGER" might modulate imagination or "thinking" feature 

signal paths, modeling removing attention from those paths in the face of danger.  To model sleeping 

or exhaustion, where perceptual gain is further turned down, the expression (d) could further include 

other graph-level shared parameters modeling these mental "states". 

4 Summary and Discussion 

This work has explored plausible biologically-inspired mechanisms for how features at various 

levels of abstraction can combine and recombine into structures of long-term memory patterns, and 

how feature-based pattern recognition may vary with context and attention.  Small NeurOS "neural 

circuits" were built by interconnecting NeuroBlock modules for inputs, processing, outputs, and in 

particular memory pattern modules.  Variations in simple parameters and signal interconnections of 

biologically-inspired Set and Sequence pattern modules yielded a wide range of cognitive capabilities:  

concurrent parallel unsupervised learning of exemplar and stereotype patterns, prediction of missing 

features, layers of alphabet/vocabulary patterns, labels as synonyms, imagination expansion of labels 

into features, and variations in pattern recognition strengths from the same features in different 

contexts and attentional states. 

Categorization is coming to be viewed not as a distinct task but as part of the overall cognitive 

processing fabric (Anderson, et al., 2001).  The neural circuits here can be replicated anywhere in a 

cognitive architecture where such pattern learning and recognition is needed.   



 

 

Concept learning and recognition systems benefit from concurrent hybrids of exemplar, 

stereotype/prototype and other categorization systems. (Lieto, 2014) (Lieto, et al., 2015)  Small neural 

circuit sub-assemblies of NeurOS memory pattern modules, including the NeurOS Set pattern 

"synonym" semantic, enable creation of such unified hybrid concept representations. 

One cognitive architectural viewpoint emerging from this work is that low-level features continue 

to matter the same amount (same weights) as learned from repeated experience by low-level patterns, 

but that higher-level "upstream" processes involving attention, context and recombinations with other 

features gate the current importance of a lower-level feature.  A yellow car may not mean much unless 

you are looking for a taxi in New York City.  Such a suggestion is biologically testable (e.g., brain 

activity scans) and is an example of potential bi-directional synergy between biological and artificial 

cognitive research. 

The fact that these diverse cognitive constructs emerged from combining relatively few common 

building blocks builds confidence both in sufficiency of the technology, and in continuing such 

synthetic approaches.  These low-level cognitive sub-assemblies may themselves be reused and 

combined to build increasingly complex cognitive systems. 

Parametric variations of the Set and Sequence modules yielding different pattern learning and 

recognition semantics are suggestive of functional differences among biological neuron types.  Shared 

global parameter variables seem reasonably model broad neuro-chemical signaling paths.  Reification 

of a learned pattern into activation of its component features seems powerful and essential, and may be 

analogous to extensive feedback connections found in biological brains.   

Biological brains exhibit a rather large number of inhibitory synapses (Seung, 2013 p. 56), 

particularly those used in cross-inhibition where the strongest neuron activation (highest spiking rate) 

decreases firing of other competing neurons.  This work so far does not explicitly model negative-

weighted inhibitory synapses, although NeurOS machinery can handle them (as negative feature 

weights in patterns).   Rather, the functional effects of cross-inhibition emerge in these neural circuits 

from using a max function in a Group Operations module to select and pass through the strongest 

input signal of many. 

Examples and data used here are simplified in numerous ways.  In more realistic systems noise and 

sensor characteristics will yield less ideal input feature signals.  NeurOS easily handles such variable 

signals, but they are not shown here to simplify presentation and explanation. 

Learning here diverges from current popular machine learning approaches (Domingos, 2015 p. 7).  

One-shot learning from a single feature data point is immediately available for subsequent recognition.  

Learning is continuous with on-going experience.  There are no inherent limits on the number of 

patterns that can be learned.  Instead, repeated similarities implicitly bound the pattern population.   

Not surprisingly, what is learned is highly order dependent.  The need for order-independent static 

model convergence and stability are questionable.  Human classification is inherently messy and 

subject to progressive adjustment from experience.  Convergence of pattern layers despite such order-

dependence is explored in Future Work.   

Backtracking is not used for supervised learning.  Instead, labels are associated with learned 

patterns as synonyms in a feed-forward fashion. 

The history of artificial intelligence covers the gamut from highly abstract "symbolic AI" to 

exceptionally detailed biological simulation models of neurons, synapses, dendrites and axons.  

NeurOS focuses on function and connectivity while maintaining plausible analogies to biology, 

offering numerous benefits.  Working neural circuit models are visual, resembling functional and brain 

connectivity flow diagrams, and are computationally tractable, easy to test, instrument and rapidly 

iterate.  Neural/cognitive research findings can be rapidly implemented and tested, and easily 

embodied in artificial systems.  Biological function hypotheses can be quickly simulated, tested, 

instrumented, iterated and understood in ways that are exceedingly difficult in vitro.  This encourages 

synergistic cross-inspiration between biological and cognitive computing research and development. 



 

 

4.1 Future Work 

These and other neural circuits (see (Scheffler, 2014) and (Scheffler, 2016)) that have been built 

are just starting points of what promises to be a rich journey of understanding.  On-going work is 

anticipated along many vectors to build increasingly diverse, complex and capable working cognitive 

systems. 

Adding new NeuroBlock modules to encapsulate perception and action technologies will increase 

the scope and range of cognitive systems that can be built, and enable them to interface increasingly 

with "real worlds", including not just the physical world (e.g., in robotics), but also the electronic 

worlds of the Internet and the "Internet of Things".  

Set, Sequence and Temporal long-term memory pattern modules are broadly useful.  Nevertheless,   

one size need not fit all.  Biological brains use similar components and structures in many places, but 

also incorporate specialized structures and components.  Using NeurOS facilities to integrate existing 

technologies for machine learning, vision and speech processing, robotic systems, planning, language 

understanding and production will enable richer and more competent artificial systems. 

As neural circuits emerge for generally useful cognitive functions, they can be recaptured as 

reusable NeurOS modules in similar fashion to electronic integrated circuits, and shared with the 

NeurOS user community. 

In the spirit of evolution and Braitenberg's "downhill invention" (Braitenberg, 1984), incremental 

improvements to the cognitive constructs reported here may yield increased capabilities and 

understanding: 

 Replacing the 14-segment LED input with more general pixel-grid input and visual 

preprocessing may move the neural circuit of Figure 5Error! Reference source not found. 

closer to handwritten digit and character recognition. 

 Adding a phonetic path to the neural circuit of Figure 5Error! Reference source not found. 

may test reading theories of commingling learned audio and visual alphabets and patterns.   

 More capable reading and language understanding neural circuits may use multiple 

recombinant paths for letter alternatives, n-grams, syllables, short phrases, synonyms, etc.  

 Adding feedback connections from prediction (e.g., next word possibilities from familiar 

phrases) may enhance reading speed. 

 Having an existing pattern label available with new data may help focus classification 

adjustments for new data points:  if you are told an animal is a cat, you can adjust just cat-

synonym feature patterns. 

 How can different brains with essentially the same representations and algorithms a) develop 

divergent knowledge infrastructures (alphabets and vocabularies), yet b) exhibit similar 

higher-level understanding and capability.  Stereotype clusters learned as in Simple 

Unsupervised Learning above are clearly dependent on the order of experience.  Higher layers 

of pattern learning and recognition recombine lower-layer alphabets and vocabularies.  With 

an eye to algebraic equivalence of complex expressions, abstract levels of similar 

understanding may still emerge from combining different finer-grained vocabularies, in the 

mode of Layers above.  Presenting similar but different experience data point sequences 

should yield differing mid-level patterns but convergent higher-level recognition results. 

 Context may derive from more than just current conversation, but include situational 

awareness (e.g., at the ballpark, concert hall or in the kitchen) and "what I was thinking 

about". 

 Additional attention mechanisms, such as generating behavioral actions to modulate sensory 

input (e.g., eye/head/eylelid movement) and modeling more complex neuro-chemical 

interactions. 



 

 

Humans are equipped to do a "pretty good" job at most endeavors, although machines of focused 

optimized design exceed human performance at specific tasks.  NeurOS-based cognitive systems are 

expected to pursue today's popular cognitive challenges:  handwritten digit and letter recognition, 

scene segmentation, object recognition, written and spoken language understanding, optical illusion 

resolution.  Like humans, a "general intelligence" should do well in a "Cognitive Olympics" of many 

diverse events, even if it does not beat all comers at any specific event. 

A NeurOS/NeuroBlocks development kit and all the neural circuits and related data sets used here 

are expected to be available soon; see (Scheffler, 2016).  An open community of NeurOS users and 

developers are expected to grow the technology and its usages in numerous dimensions:  more 

modules, more sensorimotor functions, ports to more platforms, performance increases from both 

parallelism and modern neuromorphic hardware support, distributed and team operation. 
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